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Abstract: One of the leading causes of cancer deaths is esophageal cancer (EC) because
identifying it in early stage is challenging. Computer-aided diagnosis (CAD) could detect the
early stages of EC have been developed in recent years. Therefore, in this study, complete
meta-analysis of selected studies that only uses hyperspectral imaging to detect EC is evaluated
in terms of their diagnostic test accuracy (DTA). Eight studies are chosen based on the Quadas-2
tool results for systematic DTA analysis, and each of the methods developed in these studies is
classified based on the nationality of the data, artificial intelligence, the type of image, the type of
cancer detected, and the year of publishing. Deeks’ funnel plot, forest plot, and accuracy charts
were made. The methods studied in these articles show the automatic diagnosis of EC has a high
accuracy, but external validation, which is a prerequisite for real-time clinical applications, is
lacking.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The anticipated projection of cancer to surpass all other noncommunicable diseases as the
foremost cause of mortality worldwide is escalating [1]. Esophageal cancer (EC) is the eighth
most prevalent cancer globally among the 200 types of cancer. It is associated with a bleak
prognosis, rendering it one of the primary contributors to cancer-related mortality [2]. Esophageal
squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer (EC), while
esophageal carcinoma has been the most frequently occurring type of EC over the last four decades
[3]. Esophageal squamous cell carcinoma (ESCC) is predominantly prevalent in developing
nations, particularly in Africa and Asia, where squamous cells are more prevalent. In Japan,
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approximately 90% of esophageal cancer cases are attributed to ESCC [4]. The act of smoking is
a prevalent risk factor associated with the development of ESSC, as documented in literature
[5]. Moreover, the consumption of alcohol represents the most potent risk factor for esophageal
squamous cell carcinoma (ESCC) among individuals diagnosed with squamous cell carcinoma of
the neck and head [6]. In contrast, developed nations such as those in America and Europe exhibit
a higher prevalence of esophageal adenocarcinoma (EAC). Several risk factors associated with it
include smoking, obesity, and gastroesophageal reflux disease [7]. Moreover, EAC is a form of
EC that exhibits a higher prevalence in males as compared to females. Over the recent years,
there has been a significant increase in the incidence of fatalities associated with esophageal
complications, with an estimated annual death toll of over 400,000 [8]. According to research,
the five-year survival rate for EC is between 15% and 20%. However, if the cancer is detected in
its early stages, the survival rate can increase significantly to 80%. This information is supported
by previous studies [9]. Odynophagia and dysphagia are typically identified during the latter
stages of the disease, resulting in the diagnosis of esophageal cancer being predominantly made
during its advanced stages [10].

The development of technologies for early and efficient detection of EC is a top priority for
researchers across various disciplines, given the concerning mortality rate associated with this
condition. Such advancements are expected to significantly improve the survival rate of EC [11].
Numerous scholars are presently engaged in the development of computer-aided diagnosis (CAD)
models for the early detection of cancer [12–43]. The utilization of CAD models has made a
remarkable contribution towards aiding endoscopists in the detection of EC [44]. Wang et al.
conducted a study wherein they devised a deep convolutional neural network (CNN) that was
integrated with a single-shot multibox detector (SSD) to detect early EC by utilizing the outcomes
of narrow-band imaging (NBI) and white light imaging (WLI) [10]. In their research, Li and
colleagues investigated the feasibility of utilizing serum-enhanced Raman spectroscopy with
silver nanoparticles (Ag NPs) in conjunction with a support vector machine (SVM) to differentiate
between patients with EC and those without cancer. The diagnostic accuracy achieved was 85.2%
[45]. The utilization of semantic segmentation has been investigated as a means for the early
detection and classification of esophageal cancer [15]. Biosensors have been demonstrated to be
efficacious in the detection of cancer, as evidenced by prior research studies [46–69]. Furthermore,
biosensors have been suggested as a cost-efficient means for the timely detection of cancer, in
addition to CAD [70]. Tseng and colleagues have effectively fabricated a photoelectrochemical
(PEC) biosensor featuring a p-n heterojunction, which incorporates a well-crystallized Cu2O/ZnO
structure that endows the device with visible light photo response and electrical characteristics.
The biosensor’s configuration facilitates the identification of two distinct levels of cancerous
esophageal cells, namely a normative cell type derived from a Caucasian male (OE21) and a
highly invasive cancer cell variant prevalent among Caucasian males (OE21-1) [63]. Wu et al.
conducted a study wherein they integrated a p-type Cu2O film with n-type ZnO nanorods to
fabricate a photoelectrochemical biosensor. This biosensor was designed to detect human EC
cells in the absence of external bias. The biosensor that was developed exhibited an enhancement
in the photo current signal, thereby facilitating the detection of EC cells of a severe nature [67].
The analysis of EC cells using a microchip with dielectrophoretic impedance measurement for
early treatment and diagnosis was observed in the study of Wang et al. Using the technology of
this biosensor helpfully distinguished different stages of ESCC and provided consistent findings
similar to those using hyperspectral imaging (HSI) technology [65].

Despite the capabilities of CAD in combination with RGB image processing and biosensors
as methods of providing quality information in cancer detection, these approaches have some
limitations. Traditional CAD requires processing a large amount of collective training data and
computational power to obtain a better performance in machine learning as they use only three
color channels (red, green and blue) [71]. The efficacy of CAD models in detecting cancer is
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compromised due to a technological limitation observed in the recent CAD model for colonoscopy,
which employed a restricted dataset of only 6,000 images for machine learning purposes [72].
The detection of tumor markers through biosensors is feasible owing to the optical, magnetic,
and distinctive characteristics of nanomaterials, which enable the identification of biomarkers
and tumor vasculature with a high degree of specificity. Nevertheless, the adaptability of these
nanomaterials to the environment remains a significant obstacle [73,74]. One of the methods
that could overcome all the challenges is the combination of HSI with CAD methodologies. The
utilization of a wide spectrum of light ranging from UV to far-infrared for image capture, as
opposed to the conventional RGB color model, has the potential to enhance cancer detection
performance. This noninvasive approach provides more comprehensive information about the
subject, as evidenced by research findings [75].

HSI follows the principle of optical sensing technology for imaging and spectroscopy [76]. It
provides both spatial and spectral information about the subject in a noninvasive way [77]. A
hyperspectral image is formed when a 2D spectral data of each pixel is detected, and the spatial
and spectral information are obtained; therefore, the origin of each spectrum in the subject can
be identified [78]. Compared with the naked eye with very limited capabilities in distinguishing
objects in terms of the electromagnetic spectrum, HSI has the function to emanate spectral
information larger than RGB data [79]. HSI has three common techniques, namely, push broom,
filter based, and whisk broom, which results in a 3D hypercube that includes a spectral and two
spatial axes [80]. Push broom provides data in high spectral and spatial resolution, but it can
cause complexities during post processing because it records only the lines of spectral data per
exposure [81]. Whisk broom records lateral and spectral information pixel by pixel, making it
more time consuming than push broom [82]. The filter-based technique is wavelength-coded
imaging that uses optical filters such as RGB narrowband filters to capture spectral data [83]
[84]. Various improvements in HSI have been made in the past 30, and it effectively contributed
to different fields not only limited to environment, medicine, astronomy, security, archaeology,
agriculture, art conservation, military defense, and food quality [85–181]. HSI technology is
beneficial in the field of medicine, especially in various cancer detection and diagnosis methods.
Table 1 shows research studies of cancer detection diagnosis using HSI technology in recent
years.

Table 1. Studies of HSI in other medical application including other Cancer
Detection

Year Author Application Spectral Range (nm)

2021 [182] Winkeln et al. Colonl Cancer 500-1000

2020 [183] Liu et al. Gastric Cancer Detection 900-1700

2020 [184] Aboughaleb et al. Breast Cancer Detection 420-620

2021 [185] Courtenay et al. Skin Cancer Detection 398–995

2022 [186] Eggert et al. Head and Neck Cancer
Detection

390-680

2023 [43] Wang et al. Diabetic Retinopathy 380-780

2020 [183] Liu et al. Gastric cancer diagnosis 900-1700

Table 2 briefly describes the endoscopic machines available commercially that used CAD.
FujiFilm, known for its converging technologies from analog photography, digital diagnostic sys-
tems, all the way through medical and healthcare technologies, developed its endoscopic machine
that has a new artificial intelligence (AI) called CAD EYE, which uses WLI, bioluminescence
imaging, and linked color imaging [187]. Yoshida et al. provided a study where CAD EYE AI
was evaluated and produced impressive results helpful for recognizing lesions by CADe and
optically diagnosing colorectal polyps by CADx with an accuracy of 87.6% [188]. CAD EYE
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can also function as a real-time colorectal polyp detector [189]. GI Genius is a medical device
trained for processing colonoscopic images (CADe) and displays suspicious lesion in real time
using NBI with an accuracy of 99.7% [190]. Brand et al. suggested that the AI used in GI genius
(CADe) has a great potential in real-time endoscopic detection [191]. Odin Vision has a current
machine learning that aids the decision making of a device in real-time polyp detection that can
influence the clinician’s interpretation and diagnosis [192]. Odin Vision uses NBI endoscopic
imaging. EVIS XI is a third-generation chromoendoscopic technology developed by Olympus to
address the needs of endoscopists for better detection and diagnosis of lesions in real time using
NBI, red dichromatic texture, and color enhancement endoscopic imaging [193]. Tang et al.
used different endoscopes from Olympus including variations of EVIS to predict gastric cancer
better, which resulted in a better diagnostic performance that helped endoscopists [187,194].
Pentax was also mentioned from another study by Milluzzo et al. that aimed to review several
AIs responsible for colonoscopy; they found that Pentax Discovery has capabilities to support
endoscopists in the real-time detection of polyps and lesions with an accuracy of 90% [195].

Table 2. Endoscopic machines using CAD from different companies

Criteria Fuji Film GI Genius Odin Vision Olympus Pentax

Origin Japan USA London Japan Japan

Description Colonic poly
detection and

characterization;
Movie Recording

Function

Intelligent Endoscopy
Module

Colonoscopy AI;
AI for Esophagus

AI-powered
endoscopy

system

Polyp and
lesion

detection

CAD CAD EYE EX-1 CADe CADU EVIS XI Pentax
Medical

DiscoveryTM

Accuracy (%) 87.6 99.7 Not mentioned Not mentioned 90

Purpose Suspicious polyps
detection

Colorectal polyps detection
during colonoscopy

Assists doctors in
esophagus and

colorectal polyps’
detection

Colorectal
polyps,

malignant
neoplasm,
adenoma
detection

Polyps
detection

Endoscopic
Imaging

WLI;
Bioluminescence
imaging; Linked
color imaging

NBI NBI NBI; Red
dichromatic

texture; Color
enhancement

Not mentioned

Deep Learning NN CNN CNN CNN DNN

Algorithm Not mentioned Not mentioned VGG16, FetNet Not mentioned Not mentioned

Training
Database

Fujifilm AI
Technology, Tokyo

Italian Centers University College
London Hospital;
Cardiff University
Hospital-AI Polyp

Detection

Germany,
Europe

Not mentioned

Realtime YES YES YES YES YES

Endoscopist
Enrollment

YES YES YES YES Not mentioned

This study analyzes recent studies related to EC detection and diagnosis using HSI technology
in combination with CAD methodology. It evaluates the diagnostic performances of CAD+HSI
algorithms used for EC detection and diagnosis. The diagnostic performances included in
the study are observed in terms of sensitivity, specificity, accuracy, and area under the curve
(AUC). The review briefly explains the studies and presents recommendations according to the
meta-analysis of different CAD+HSI methods involved.
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2. Materials and methods

This section discusses the processes encountered in acquiring studies relevant to this review,
specifically, studies related to EC detection and diagnosis using HSI technology. This section
presents the inclusion and exclusion criteria in selecting appropriate studies.

2.1. Study selection criteria

The purpose of this review is to provide comprehension of the advances in EC detection and
diagnosis using HSI that exhibits the strengths and weaknesses of this system in terms of EC
detection. This review focuses on studies that meet the established inclusion criteria: (1) studies
with definitive numerical results such as dataset, sensitivity, accuracy, precision, and AUC; (2)
based on HSI dealing with EC detection; (3) published in the last six years; (4) publication
journal has an H-index greater than 50 and is in the first quartile (Q1); (5) studies with prospective
or retrospective design; and (6) studies written in English. Additionally, this review disregards
studies that fall under the exclusion criteria: (1) studies with insufficient data; (2) studies under
narrative, systematic review, and meta-analyses; (3) comments, proceedings, or study protocols;
and (4) conference papers. The Quality Assessment of Diagnostic Accuracy Studies Version
2 (QUADAS-2) is introduced in this study by the two authors to assess the quality of the
methodologies of the articles to be reviewed. QUADAS-2 contains bias assessment in selecting
patients and during the index test. It also assesses the standard of reference and the risk bias in

Table 3. QUADAS-2 Summary

Study
RISK OF BIAS APPLICABILITY CONCERNS

PATIENT
SELECTION

INDEX
TEST

REFERENCE
STANDARD

FLOW
AND

TIMING

PATIENT
SELECTION

INDEX
TEST

REFERENCE
STANDARD

[197] Tsai et
al. / 2021

[198]
Maktabi et
al. / 2019

[199]
Hohmann et
al. / 2017

[200]
Nakano et al.

/ 2020

[201]
Grigoroiu et
al. / 2020

[202]
Maktabi et
al. / 2022

[203] Wu et
al. / 2018

[182] T.
Collins et al.

/ 2021

Low Risk
 H

High Risk Unclear Risk



Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 4388

terms timing and flow as domains. The applicability assessment is also observed with the bias
assessment the by two authors [196].

2.2. QUADAS-2 result

Table 3 summarizes the QUADAS-2 results of the eight studies included in this re-view. It
contains the applicability concerns and the level of risk of bias of the studies. Each study was
reviewed based on flow and timing, patient selection, reference standard, and index test for risk
of bias as well as under patient selection, reference standard, and index test for applicability
concerns.

3. Results

This section shows the results of the review including the clinical features observed and a brief
explanation of each study. This section also contains the numerical results gathered from each
study. This section also explains the comparisons of the results in terms of sensitivity, specificity,
accuracy, and AUC. This section also incorporates the tabulated results and the summary receiver
operating characteristic curve (SROC).

3.1. Clinical features observed in the studies

The studies selected for this article analysis examine the performance of various CAD methods
for EC detection and diagnosis. Studies included in this review are explained briefly, highlighting
their objectives, CAD algorithm used, and the results. Moreover, the accuracy, sensitivity,
specificity, and AUC in detecting and classifying EC lesions and neoplasms from each article
were recorded using subgrouping and meta-analysis. These indices were assessed and compared
from different CAD methods used in the articles.

Tsai et al. used HSI to identify EC stages and mark the locations using the CNN of the SSD
model. A total of 155 WLI and 153 NBI images from 1,232 endoscopic images were used for
dataset training (AI-HSI) in the visible band between 380 and 780 nm. The results showed that
the use of HSI increased the accuracy of detecting cancer lesions by 5% in both WLI and NBI
images [202]. In another study, Maktabi et al. used ex vivo specimen images from 11 patients in
determining the performance of HSI during esophageal resection intra-operative analysis. The
dataset was trained and classified in four different methods, namely, SVM, k-nearest neighbors
(k-NN), multiple perception classifier (MLP), and random forest (RF). The results showed that
the use of HSI in classifying esophagogastric restates had sensitivity of 63% and specificity of
69%, which were excellent [203].

Homann et al. presented the results from an endoscopy of the stomach and esophagus for early
cancer detection using Gaussian and linear kernel SVM, RobustBoost (RB), AdaBoost (AB), and
RF-walk applied with HSI in the visible band between 400 nm to 650 nm. The result of this study
indicated that RB was the best in all five classifiers having sensitivity of 63%, specificity of 65%,
and accuracy of 64% [186]. Nakano et al. proposed the use of low-concentration Lugol stain and
narrowband illumination, a highly sensitive yet less invasive cancer detection technique in the
visible band between 420 nm and 720 nm. The proposed illumination (MBSI) was compared with
WLI and NBI in differentiating normal and cancerous elements. The proposed illuminations,
namely, MBSI-6 and MBSI-9 with stained Lugol, showed a better performance of greater than
90% [182]. A study conducted by Grigoroiu et al. tested a five-layer CNN system established
under a standard Macbeth color-classification method for analyzing endoscopic HSI images in
real time in which the data acquired at center wavelengths of 450, 550 and 650 nm. The ex vivo
data of biopsies of 12 human esophagi were applied with CNN. The application of CNN to the
human biopsies obtained an average consistency of 86.9% in classifying tissue biopsies into four
types labeled normal, adenocarcinoma, Barrett’s esophagus, and squamous epithelium [204].
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A study by Maktabi et al. used the pixel-wise classification method to differentiate HSI images
such as EAC, tumor stroma, and squamous epithelium cells gathered from 95 patients with
oncologic esophagectomy in the visible band of 500 nm and 750 nm. Logistic regression, MLP,
SVM, RF were the learning methods for analysis. The study obtained an average accuracy of 78%
and a specificity of 84% for tumor stroma and EAC discrimination; for squamous epithelium
cells, the overall average was 81%, and MLP was the best classifier [205]. Wu et al. proposed
an early detection method for esophageal cancerous lesion by HSI and endoscopy. This study
presented the use of HSI and principal component analysis as an optical detection approach for
esophageal cancerous lesions, which can help physicians in the early identification of cancer
lesions in the visible band between 380 nm and 780 nm [206]. Collins et al. examined the chance
to expand training datasets to overcome the limitation of machine learning that is to use many
datasets. A total of 22 images consisting of healthy to cancerous colon and esophagogastric
tissues were used in the visible and NIR band between 550 nm and 1000 nm. The results showed
that the 3DCNN model provided more accuracy than traditional learning models, and MLP
obtained better results than RBF-SVM [207].

Table 4 shows the observed clinical characteristics of the studies involved. Studies involving
CAD algorithms for EC detection can be classified based on image analysis [197,203] and
patient/specimen analysis [198–202,182]. These studies have different approaches on how to
gather the needed images. .The study by Wu et al. showcased both patient/specimen based and
image-based analyses [203]. Out of the 2 analyses based on image, 1,452 images comprising
260 normal, 276 low-grade dysplasia, 425 high-grade dysplasia, and 491 ECs were associated.
Moreover, 414 patients were involved in all of the studies. Three studies used an Asian dataset
representing Asian populations [197,200,203] and 5 out of these 8 studies represented European
populations [198,199,201,202,182]. CNN [197,201,203,182] and SVM [198–200,182] were
some of the most common CAD algorithms used in the studies, and two studies used MLP
[198,202]. Most studies used WLI images as the default endoscopic image to be studied
[197,199–202], whereas one study introduced a new type of endoscopic image [200]. The
prediction of the severity of EC was observed in five studies [197,200–202,182] where 2 studies
used CNN algorithm [197,201], one study had SVM [200], one study had MLP [202], and
another study contained CNN, SVM, and MLP algorithms [182]. These studies categorized the
severity of EC lesions, whether ESCC or EAC, from normal to severe.

3.2. Meta-analysis of the studies

Table 5 shows the meta-analysis and subgroup analysis for EC diagnosis. Among the 8 studies
included in this review, the average accuracy, sensitivity, specificity, and AUC were 79.55%
(58.2%–89.5%), 71.15% (28%–90%), 79.64% (61%–89%), and 80.21 (70%–91%) respectively.
Studies on Asian population showcased much higher accuracy of 84%, sensitivity of 83.22%, and
specificity of 86.71% compared with studies on European population with accuracy of 76.7%,
sensitivity of 76.7%, and specificity of 74.33%. One of the factors that made Asian studies better
was the number of images involved. Tsai et al. used 1,232 WLI and NBI images with 89.5%
accuracy, 89.4% sensitivity, and 89.15% specificity. Tsai et al.’s dataset was comparatively larger
than that of the European study by Maktabi et al. with only 95 specimens and 85% accuracy,
73.7% sensitivity, and 77.3% specificity, which underperformed compared with the study by Tsai
et al. This finding supported the information that a larger dataset for training in CAD algorithms
yielded a better diagnostic performance [204].

The employment of deep learning for image recognition in the medicine field has been a
trend in the recent years [205]. The meta-analysis suggests that CNN was the leading CAD for
EC detection and diagnosis supported by accuracy, sensitivity, specificity, and AUC of 88.2%,
83.77%, 90.35%, and 91%, respectively. CNN had the best performance compared with other
machine/deep learning such as SVM (68.33% accuracy, 63.85% sensitivity, 90.35% specificity,



Research Article Vol. 14, No. 8 / 1 Aug 2023 / Biomedical Optics Express 4390

Table 4. Clinical Features of the Studies considered in this study including the nationality,
method, lighting, accuracy, sensitivity, specificity, the number of images, and AUC of the studies.

Author
Year

Nationality Method Lighting Index
Number

#Of images Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

ROC-
AUC

[197] Tsai
et al. /
2021

Retrospective
(ASIAN)

CNN WLI 1 620 88 87 87.3
NA

NBI 2 612 91 91.8 91

[198]
Maktabi et
al. / 2019

Retrospective
(EURO-
PEAN)

k-NN

NA

3

NA NA

27.5 70.5

NA
RF 4 18.5 81

SVM 5 44.8 62

MLP 6 22 75

[199] M.
Hohmann

et al. /
2017

Prospective
(EURO-
PEAN)

Random
Forest
Walk

WLI

7

4-6 biopsies

55 56 62

70
Robust
Boost

8 64 63 65

SVM
Linear
Kernel

9 61 57 63

SVM
Gaussian
Kernel

10 56 66 52

AdaBoost 11 55 56 63

[200] K.
Nakano et
al. / 2020

Prospective
(ASIAN)

SVM

NBI 12

4 resected
specimens

75 84.22 71.6

NA
WLI 13 74.3 83.7 70.3

MBSI-6
(proposed)

14 80.4 86.4 79.8

MBSI-9
(proposed)

15 82.9 86.7 82.2

[201] A.
Grigoroiu

et al. /
2020

Retrospective
(EURO-
PEAN)

CNN WLI 16 12 biopsies 86.9 86.9 86.9 NA

[202] M.
Maktabi et
al. / 2022

Retrospective
(EURO-
PEAN)

MLP WLI 17 95 specimens 85 73.7 77.3 87.3

[203] I. C.
Wu et al. /

2018

Retrospective
(ASIAN)

CNN NBI 18 220 NA 74.75 95 NA

[182] T.
Collins et
al. / 2021

Prospective
(EURO-
PEAN)

SVM
NA

19 12
Esophageal

datasets
NA NA NA

79

MLP 20 80

3DCNN 21 91

and 74.5% AUC) and MLP (68.33% accuracy, 47.85% sensitivity, 76.15% specificity, and 83.65%
AUC). Although CNN and SVM were AIs that are both used in EC image recognition, they
somehow exhibited different expertise. On the one hand, CNN recognized overlooked biological
features and predicted the risk of someone for certain diseases [206]. On the other hand, SVM
can inhibit data noise due to its sparse property [207]. Nevertheless, CNN was more effective in
EC detection based on the data obtained by this meta-analysis.

Studies that used NBI endoscopic images presented the best results (83% accuracy, 83.59%
sensitivity, and 85.87% specificity) compared with studies that used WLI endoscopic images
(78.48% accuracy, 78.28% sensitivity, and 76.56% specificity), proving that NBI is more sensitive
than WLI, as also observed by Tsai et al. One of the benefits of NBI is preventing small cancerous
lesions from being missed during detection [208]. NBI performs better than WLI in cancer
detection because it uses narrowband width filters with center wavelengths between 540 nm and
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Table 5. Sub-Group and Meta-Analysis of Diagnostic Test Accuracy which includes the
classification of data based on Nationality, Machine learning model, Endoscopic Images,

Esophageal cancer type and publishing date

Subgroup Number of
Studies

Accuracy (%) Sensitivity (%) Specificity (%) AUC

Average meta-analysis of all
studies

8 79.55 71.15 79.64 0.8021

Nationality of Data

Asian
European

3 84 83.22 86.71 NA

5 76.7 62.1 74.33 0.8021

Machine/Deep Learning
CNN 4 88.2 85.24 90.05 0.91

SVM 4 68.33 72.69 68.7 0.745

MLP 3 85 47.85 76.15 0.8365

k-NN 1 NA 27.5 70.5 NA

RF 2 55 37.25 71.5 0.70

Boost 1 59.5 59.5 64 0.70

Endoscopic Image
NBI 3 83 83.59 85.87 NA

WLI 5 78.48 78.28 76.56 0.7865

Proposed by the Study 1 81.65 86.55 81 NA

Esophageal Cancer Type
EAC 3 76.7 73.4 75.07 0.7865

ESCC — — —- — —

Both EAC and ESCC 1 NA 28.2 72.13 NA

Publishing Date
Below 2018 1 58.2 59.6 61 0.70

2018-2020 4 82.53 51.39 78.05 NA

2021-2022 3 87.25 81.68 83.23 84.33

415 nm [209]. Furthermore, the 415 nm light can be fully absorbed by hemoglobin, which enables
distinctly recognizing the microvascular structure of an organ [210]. Another type of image was
proposed from the study of Nakano et al., specifically, the multiband switching illumination
(MBSI). MBSI was designed using multiple three-band illuminations inside the endoscope. The
three-band illumination (3- BI) was composed of RGB LEDs combined with the characteristics
of a narrowband light emission. MBSI showed engaging results (81.65% accuracy, 86.55%
sensitivity, and 81% specificity) [200].

EAC and ESCC are the two histologically most prevalent kinds of EC [211]. EAC and ESCC
share some common risk factors such as smoking, alcohol consumption, and increased prevalence
in men and in older patients [212]. Despite the similarities of the risk factors of these EC types,
some risks can only be observed on one type. For example, Barrett’s esophagus is the main risk
factor of EAC, whereas Achalasia is the main risk factor of ESCC [213]. The endoscopic images
of EAC are more commonly used by the studies involved in this review (76.7% accuracy, 73.4%
sensitivity, 75.07% specificity, and 78.65% AUC) considering that most studies used European
data, where EAC is more prominent than ESCC [214]. However, insufficient data were reflected
for ESCC because most studies did not specify the type of EC used, whereas Maktabi et al. used
both ESCC and EAC data with results of 28.2% sensitivity and 72.13% specificity.
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Furthermore, an increasing trend was observed in accuracy, sensitivity, specificity, and SROC
when studies involved were observed based on their year of publication. An example is a study
before 2018 with 58.2% accuracy, 59.6% sensitivity, 61% specificity, and 70% AUC to 87.25%
accuracy, 81.68% sensitivity, 83.23% specificity, and 84.33% AUC. This result was the aftermath
of the researchers’ increasing attention to HSI [215]. Hence, progressive studies conducted for
HSI technology can be advantageous for improving its overall performance in cancer recognition
and diagnosis [216].

3.3. SROC curve and subgroup meta-analysis

SROC was created for EC detection with endoscopic image. The average sensitivities and
specificities of the studies were plotted to visualize and observe the performances better [217].
Studies with CAD methods that achieved a better performance were plotted in the upper-leftmost
part of the graph, approaching 100% on both sensitivity and specificity. The study by Tsai et al.
using CNN as CAD method obtained the highest sensitivity of 91.8%. However, the methods
near the origin were considered to have low performance. The study by Maktabi et al. using
RF as CAD method generated the lowest sensitivity of 22%. Figure 1 shows the SROC based
on the sensitivity and specificity of the CAD methods. The SROC obtained 0.13 as the p value,
inferring that heterogeneity was not present among the studies involved because the obtained
results were statistically insignificant.

Fig. 1. SROC curve of the studies. Different number represents the index number of the
study. AUC= 0.686. SROC curve based on Sensitivity and Specificity of CAD Methods.
The number points to the study index of the study. (For study index refer to Table 5).

Additionally, an accuracy graph was generated to visually compare the CAD methods used
in the studies based on their accuracy in EC detection. Figure 2 shows the overall accuracy of
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different CAD methods used in the studies. The most commonly used method was CNN with
several types of SVM. The use of CNN in EC detection was the most dominant among the CAD
methods used in different studies. Consequentially, the highest accuracy of 89.5% was obtained
through the use of CNN in the investigation by Tsai et al. By contrast, Hohmann et al. achieved
the lowest accuracy of 55% in EC detection using AB and RF as the CAD methods.

Fig. 2. Overall Accuracy Performance of CAD Methods. Different colors represent the
methods used in the study

Furthermore, forest plots for the sensitivity and specificity of each CAD method and for each
study involved were generated under 95% level of confidence. In the CAD methods classification,
the CNN provided the best performance of 85% sensitivity and obtained the largest weight
overall. Meanwhile, under the study classification, the study by Tsai et al. also gathered the
best performance of 90% sensitivity. In contrast, studies under Maktabi et al. (2022) and Wu et
al., and CAD methods like Robust Boost and Ada Boost, provided limited data thus, unable to
determine their upper and lower limits. Furthermore, a meta-regression analysis was made to be
able to compare sensitivities and specificities of each data in accordance with the nationality,
image type, AI, esophageal cancer type, and date published. Figure 3 shows the univariable
meta-regression of sensitivity and specificity under 95% level of confidence. The univariable
meta-regression provided quality analysis in terms of the sensitivities in different classification
having short limits in exception with the published year. Finally, Deeks’ funnel plot was produced
based on different classifications such as CAD method, Nationality, Image Type, and also in
all classifications combined. The Deeks’ funnel plot contains diagnostic odds ratio of each
classification and the fraction of the root of each sample size [218,219]. The Deeks’ funnel plot
obtained from this study provided no indication of heterogeneity [Study (p= 0.20), Image Type
(p= 0.78), CAD Method (p= 0.11), All Classification (p= 0.43)]. Figure 4 shows the funnel plot
of the studies involved. It was found that these studies have correlation with each other having
the regression line of 36.69.
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Fig. 3. Univariable Meta-Regression of Different Sub-Group Analysis including Nationality,
Image Type, AI, EC Type and Published Year (a) Sensitivity (b) Specificity

4. Discussion

Studies conducted on the detection and diagnosis of EC using HSI technology have yielded a
diagnostic accuracy that is deemed to be “very good” according to Youden’s index, as determined
by the area under the curve (AUC) [220]. The aforementioned discovery implies that the CAD
algorithm is appropriate for clinical diagnosis, particularly in the diagnosis of EC in compliance
with the DTA standard [221]. Several recent studies have been published on the use of CAD
algorithms for cancer detection, demonstrating their excellent performance as computer-based
aids in diagnosing and identifying EC.

While HSI technology shows promise in the detection of esophageal cancer, the current
clinical guidelines for managing and diagnosing this condition continue to heavily depend on
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Fig. 4. Deeks’ Funnel Plot for Studies of the studies used in the meta-analysis.

the judgment and perspective of the endoscopist [222]. The integration of AI in intra-operative
analysis has resulted in a gradual adoption of EC detection, with a relatively slow transition
observed among endoscopists. It is anticipated that the utilization of HSI technology in EC
detection will gain greater acceptance in the forthcoming period. Despite the endoscopists’
response to this technology, it appears that CAD algorithms offer advantageous diagnostic
capabilities, regardless of the endoscopists’ level of fatigue. Therefore, it is highly probable that
there will be an increase in the identification of lesions. This study demonstrated the efficacy of
HSI technology in detecting cancer at an early stage. The challenge of identifying EC during
its initial phases was established in a previous study [217]. Numerous studies examined in this
review concentrated on detecting early-stage EC and yielded noteworthy outcomes, indicating
that the possibility of early diagnosis of EC would furnish insights for prompt treatment and
betterment of patient prognosis.

The American Society for Gastrointestinal Endoscopy has implemented the Preservation and
Incorporation of Valuable Endoscopic Innovation (PIVI) to establish a mandatory performance
threshold of 90% sensitivity and 80% specificity per patient for image-enhanced endoscopy in the
detection of high-grade dysplasia and EAC [223]. The studies under consideration met the PIVI
criteria in terms of their overall specificity. However, the overall sensitivity of the studies did not
meet the aforementioned criteria. The sensitivity exhibited a wide range of values, spanning from
28% to 90%, owing to the disparate outcomes reported by various studies. While some studies
reported suboptimal outcomes, others demonstrated exceptional performance. Furthermore,
the efficacy of the CAD algorithm may vary depending on the specific characteristics of the
endoscopic images employed. The performance of CAD utilizing NBI images was superior to
that of CAD utilizing WLI images. The diagnostic efficacy was found to be analogous across the
various CAD models employed, namely CNN, SVM, and Multilayer Perceptron (MLP).

Despite the robust diagnostic performance, various limitations were identified in the studies.
One limitation of the studies is the restricted sample size of patients. This review involved
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a sample of 414 patients, which is notably smaller in comparison to the study conducted by
Bang et al. that included a sample size of up to 2,102 patients [224]. A further constraint
pertains to the inadequate involvement of patients diagnosed with ESCC. The restricted number
of participants in the aforementioned studies may have undermined the validity of the findings,
thus it is advisable to include a larger sample size for future investigations. The second issue
pertains to the restricted size of the training dataset. A limited quantity of training data can
impede the learning process of artificial intelligence, thereby affecting its diagnostic efficacy.
Maktabi et al. employed a training dataset comprising 94 out of 95 total specimens, which was
relatively limited in size compared to the 39,662 out of 67,740 training datasets utilized by Garcia
et al. in their investigation of diagnostic accuracy [225]. Moreover, none of the aforementioned
studies included a forecast of the invasion depth of EC. However, Tokai et al. conducted a study
that demonstrated the diagnostic potential of CNN in accurately and sensitively measuring the
depth of invasion in ESCC. The study reported an accuracy and sensitivity of 80.9% and 84.1%,
respectively [226]. It would have been advantageous to conduct an observation and analysis
of the depth of EC invasion, in order to expand the scope of CAD beyond merely automated
EC detection. Future research endeavors may involve the exploration of HSI technology that
incorporates a greater number of CAD algorithms, with a heightened emphasis on the invasion
depth of EC. The efficacy of CAD algorithms is contingent upon either the extent of training
data or the fidelity of the dataset representation to the primary distribution. Furthermore, the
studies included in this review did not furnish a comparison between the diagnosis of CAD and
conventional endoscopists.

5. Conclusion

Recent advances in HSI for EC detection has an optimistic performance. With further research,
the dilemma of early EC detection will slowly be overcome to facilitate the decrease in EC
mortality. Evidently, as the years of study about HSI in EC go by, the performance each
study achieves improves. Using appropriate CAD algorithms can excellently support diagnostic
accuracy for EC. In this study, certain CAD methods were suited perfectly to the use of HSI
in EC detection. The effectiveness of HSI in EC detection was also dependent on the type of
image (NBI, WLI) used in the diagnosis However, certain aspects of experimentation and studies
should be considered such as recognizing the limitations of the involved studies encountered, for
example, the insufficiency of patient participation and the limited endoscopic images and training
dataset involved during diagnostics, to improve the purpose HSI technology in EC diagnosis.
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